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Abstract. The paper is dedicated to an open T-system (OpenTS) — a 
programming system that supports automatic parallelization of computations 
for high-performance and distributed applications. In this paper, we describe the 
system architecture and input programming language as well as system’s 
distinctive features. The paper focuses on the achievements of the last two years 
of development, including support of distributed, meta-cluster computations. 

1   Open T-System Outline 

Open T-System (Open TS) is a recent dynamic program parallelization technology for 
high-performance and distributed applications. It originates from functional and meta-
programming technologies [1, 2] and tries to achieve maximum performance of 
single/multi-processors, supercomputers, clusters and meta-clusters. Another goal was 
the development of easy-to-use tools for parallel programming, with high learning 
curve and easy legacy code support. With initial implementations of T-system dated 
back to nineties and end of eighties of the last century, Open TS is a third generation 
of the T-system [3]. The Open TS approach allows addressing in a uniform way 
parallel computing problem for mutli-core processors, SMP systems, computational 
clusters and distributed systems. As well, Open TS facilitates parallel applications 
with non-uniform parallelism grains or parallelism grains defined at runtime.  

1.1   Related Work 

The Open TS design utilizes many concepts of parallel computing. First of all, it 
devises high-level parallelizing approach, while many of them currently exist [4]. 
Secondly it utilizes an extension of C++ language to express parallelism, while many 
other extensions of C and C++ for parallel computing were developed [5]. Thirdly, 
the concept of T-system is based upon functional programming approach [1], that 
make it very similar to parallel implementations of functional languages [6]. At last, 
Open TS runtime implementation utilizes Distributed Shared Memory (DSM) [7], 
mutli-tier architecture [8] and C++ template- based design [9]. Here we note 
separately only small fraction of all works in this field, not comprehensive but 
representative, as we hope: 
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1. Charm++ [10] is a C++ extension for parallel computing, which is used to 
create high-performance codes for supercomputers [11]. Open TS is different 
in many aspects – from runtime implementation to language semantics. The 
most important is that Open TS uses functional approach for parallelization, 
while Charm++ uses asynchronous communication with object-oriented 
model. 

2. mpC++ is another example of successful implementation of “parallel C” for 
computational clusters and heterogeneous clusters [12]. While mpC uses 
explicit language constructions to express parallelism, Open TS has implicit 
parallelization constructs. 

3. Cilk is a language for multithreaded parallel programming based on ANSI C 
[13]. Cilk is designed for shared memory computers only, in contrary Open 
TS can be run on computational clusters and meta-clusters. 

4. Glasgow Parallel Haskell is a well-known extension of Haskell programming 
language [14]. Open TS is similar with GPH by utilizing some implicit 
approach to parallelizing computation, while enabling low-level optimization 
on C++ level, unavailable in Haskell. 

5. OMPC++[15] is very similar to Open TS in many aspects, especially in the 
way of using C++ templates in runtime. However, language extensions are of 
primary importance for Open TS concept.  

While many parallel programming techniques, like Unified Parallel C [16] and CxC 
[17] are not covered in our comparison, Open TS distinctions will be virtually the 
same. 

1.2   Programming Model 

Unlike many tools for parallel programming, T-System does not try to change the 
usual programming model too much. Native input language is a transparent attribute-
based extension of C++; however, other T-dialects of programming languages are in 
the development stage: T-FORTRAN, T-REFAL. Only two new notions are really 
important for programming: T-function and T-value. T-values are extensions of basic 
C values with non-ready value, read access to a non-ready value stops execution of a 
T-function, unless C-value is provided during computation.  T-functions are pure C-
functions forming functional model at the top level of program structure. However, 
imperative C exists inside T-functions enabling potential for low-level optimization. 
Support for object oriented-model is forthcoming. 

An important feature of Open TS is a separation of the computation code from the 
scheduling code. In Open TS, the programmer is enabled to develop complex 
strategies for dynamic parallelization without affecting the computational code itself. 

1.3   Execution Model 

Parallel execution is based on a completely conflict-free data-flow model, and the 
“macro-scheduling” algorithm distributes computational tasks (active T-functions) 
over all available computing resources on the fly. Thus, latency hiding should enable 
very high computational power utilization.  Moreover, heterogeneous (e.g. different 
CPU speeds) computational clusters can be efficiently loaded with that approach. 
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Special hardware such as application-specific accelerators and processors can be also 
considered as specific computational resources, it is dynamically loaded in the same 
way. 

Millions of threads1 can work in a cooperative and conflict-free way enabling 
latency hiding: any time non-ready T-value is reached, T-System switches rapidly to 
another ready-to-compute task. In this way, T-System avoids blocking computation in 
many cases when communication infrastructure permits. In brief, T-System may be a 
good candidate to fill up the gap between fast recent CPUs and latency-restricted 
communications. 

1.4   T-Applications 

T-application is a self-contained, dynamically linked executable. In a nutshell, it 
recognizes the execution environment and automatically loads a corresponding 
communication driver on the fly.  The execution environment may be one of the 
following. 
• Unicomputer – runs as a single process 
• SMP — runs on a machine with symmetric multi processing capabilities 
• MPI (6 flavors are supported now, including PACX MPI and MPICH-G2 for the 

meta-cluster environment) 
• PVM. 

Thus, T-applications don't need to be recompiled or re-linked for all possible 
communication flavors. This is important in many cases, especially in meta-clusters 
with heterogeneous MPI implementations. 

2   Open T-System Design Notes 

Open T-System runtime has a microkernel-based design. Microkernel, or T-
Superstructure, is a central part of the runtime. It contains all essential entities that a 
typical program needs to be run on. T-Superstructure has a “snowman” architecture of 
three tiers: `S' (“super-memory” and “super-threads”), `M' (mobile objects and 
references) and `T' (T-values, variables, references, functions). Being compact in size 
(less than 5 000 lines in about 100 C++ classes), it suits for various extensions: 
enhanced task schedulers, memory allocation schemes, custom thread systems, and so 
on. A special class 'Feature' is used to register extension plug-ins, which are typically 
dynamically linked at the startup stage. The microkernel can be easily ported to 
`almost pure' hardware, because it is almost self-contained. C++ [cross] compiler only 
is required for such porting. However, since C++ templates are used extensively, a 
modern C++ compiler is required. 

Fast context switch is a special feature of Open TS, which is very important for 
efficient T-applications. Since T-applications are known to create millions of 
simultaneous threads, fast switching is key important. Today, the T-context switch is 
10 times faster than the fastest standard thread library switch. 

                                                           
1 Opens supports the usage of more than one million of threads even in one usual processor — 

this was shown practically, this was used in real applications. 
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A “Supermemory”, or special kind of distributed shared memory, is located outside 
of program data and used to manage T-values. Novel communication technologies 
such as hyper-transport can be directly incorporated into the “Supermemory” layer to 
avoid an unnecessary MPI overhead. Super memory is utilized in six different ways: 

1. T-Values 
2. Task exchange 
3. Resource information exchange 
4. Memorization table 
5. “Heartbeat” (see below) 
6. Shutdown signal 

The fault-tolerance support has been implemented with the help of LAM MPI 
BLCR checkpoint system [18]. It is integrated with the T-System runtime, thus 
making fault-tolerant computing easier. 

Since the T-system originates from the functional programming model, it is 
possible to implement the fault-tolerance on the base of re-computing of T-functions. 
This work is forthcoming. 

3   Compilation of T-Programs 

Two approaches are followed to develop compilers for T++ programs.  
The first, “converter”, approach utilizes OpenC++ [19] parser to translate a T++ 

program to a C++ program using Open TS runtime library calls. Advantage of that 
approach is that the best-of-breed C++ compiler can be used, with the best processor-
specific optimization available. The drawback is some C++ syntax features that are 
not supported seamlessly due to Open C++ limitations. 

An alternate, “compiler”, approach is based on an open-source GNU C++ 
compiler. An extra front-end language for T++ has been implemented, it has a smooth 
and comprehensive support of all C++ language features. However, if the GNU C 
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compiler optimization is not on a par with the other compilers of the target platform, a 
performance loss might happen. 

4   T-Application Development Stages 

First of all, T++ is a transparent attribute-based dialect of C++. The T++ code can be 
trivially mapped to the sequential C++ program by masking T-attributes on the 
preprocessor stage. To start, the T++ code may be developed and debugged without 
T-System.  

Then, the `t++' compiler may be used to obtain T-executables which should be able 
to normally run on the unicomputer. Thus, the second stage of the development 
process is to check whether everything works correctly on the unicomputer — this 
involves usual testing and debugging for the traditional (one-processor) case.  

Furthermore, the same executable may be run on the `cluster emulation'. The 
simplest way to do this is to use LAM on various Linux systems: the command 

mpirun n0,0,0,0 <t-executable> 

will emulate the 4-node cluster. Some tuning can be done at this stage. 
Finally, run T-executable on the desired target platform. 

5   T-Application Debugging and Tuning 

T-System has a number of built-in profiling, tracing and debugging facilities.  
First of all, debugging is facilitated by several modes of compilation: “optimized”, 

“normal” and “debug”. The “optimized” mode uses the runtime version with heavy 
optimization. The runtime of the “normal” mode is simplified as compared to the 
“optimized” version. If an application is compiled in the “normal” mode and a 
problem persists, it should be attributed to the application itself — not the runtime — 
with high degree of confidence. Moreover, the “debug” mode generates a large 
amount of debug output, which helps programmers to understand the current situation 
in T-runtime and applications. This output can be filtered with the help of regular 
expressions. 

A full-fledged Trace facility has also been implemented for T-applications. 
When the program is finished, some statistical data is printed (see figures below). 

It includes minimal/medium/maximal (depending on computational nodes) values of 
the following parameters: used CPU time, communication time, idle time. This hot 
profiling information may be very useful for the tuning of applications.  

Communication message logs can be called in order to understand which 
communication traffic occurred during the program execution. A T-function call 
graph can also be obtained.  

If the program crashes, some information (including program call stack with source 
line numbers) is printed. Optionally, the debugger is started at the same time, which 
may be very convenient for a rapid problem discovery.  

Finally, a special heartbeat logic is used to discover broken 
program/communication state. If heartbeat timeout is reached without any data 
exchange, then all T-processes will exit automatically. 
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6   Sample Program Run 

The example program is the calculation the Fibonacci number. Since it is not very 
hard computationally, it is a good test for the runtime system, and it illustrates well 
the simplicity of T++ programming. 

 
tfun int fib(int n) 
{ 
 if (n<2) return 1;  
 return (fib(n-1)+fib(n-2)); 
} 
tfun int main (int argc, char *argv[]) 
{ 
 int n = atoi(argv[1]); 
 printf(“Fibonacci %d is %d\n”,n,(int)fib(n)); 
 return 0; 

} 

The only T-function is the “fib” function which recursively calls itself. Since the 
result of “fib” is a non-ready value, explicit casting to int is necessary for the program 
to run correctly. The casting results in the “main” thread wait until the result of “fib” 
is ready. “fib” recursively calls itself creating a tree, while the tree branches can be 
computed in parallel.  

Compiling the program is possible with either t++ or tg++.  

t+ -o fib0 fib0.tcc 

The process of the program execution is illustrated in Fig. 1 (running on single 
processor) and Fig. 2 (running on four-cluster nodes). You may see some speedup 
demonstrated by “fib”. The example has been a mere illustration that doesn’t reflect 
the real quality of T-system, benchmarking results will be published elsewhere. 

 
 

 
 

Fig. 1.  Sample program run result in console 
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Fig. 2. Sample program run on multiple cluster nodes 

7   T++ Language in a Nutshell 

The T++ language is a semantically and syntactically “seamless” extension of C++. 
The language constructions are enumerated below with short descriptions following 
them: 

tfun — a function attribute which should be placed just before the function 
declaration. Now, the function cannot represent a class method but must be an 
ordinary C function. A function with the “tfun” attribute is named “T-function”. 

tval — a variable type attribute which enables variables to contain a non-ready 
value. The variable can be cast to the “original” C++-type variable, which makes the 
thread of execution suspend until the value becomes ready. 

tptr — a T++ analogue of C++ pointers which can hold references to a non-ready 
value. 

tout — a function parameter attribute used to specify parameters whose values are 
produced by the function. This is a T++ analog of the “by-reference” parameter 
passing in C++. 

tct — an explicit T-context specification. This keyword is used for specification of 
additional attributes of T-entities. 

tdrop — a T++ -specific macro which makes a variable value ready. It may be 
very helpful in optimization when it’s necessary to make non-ready values ready 
before the producer function finishes. 

8   Runtime Performance 

The detailed performance study of Open TS runtime is out of the current paper scope 
and will be published elsewhere. However, overall runtime performance and quality is 
good enough to stimulate many groups outside of Program Systems Institute to 
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develop their own applications with Open TS (see below). Best speedup achieved 
with image-processing application is approximately 60% of linear speedup on 32-
processor computational cluster with Scalable Coherent Interface (SCI) interconnect. 

9   Applications 

Approximately a dozen of applications have been developed with the help of T-
system. Some of them are the following: 

• Plasma physics modeling tool 
• Aerodynamics simulation package 
• Tools for computational modeling in chemistry 
• Automatic text categorization package 
• Radar image modeling application 
• Remote sensing images processing 

10   Support 

Open T-System is being developed in the Program System Institute of the Russian 
Academy of Sciences (PSI RAS) as a key technology in the SKIF Super-Computing 
project.  The system support can be obtained via e-mail: opents@botik.ru 
(developers’ conference). 

11   Work in Progress 

We are also working on various application-oriented T-libraries. Such libraries are 
represented as the T++ code (working also in pure C++) and may be used without any 
knowledge of T++ or even parallel programming at all. Using the C++ inheritance 
mechanism, an application programmer just needs to define several application-
specific methods — virtual functions — to obtain a complete highly-parallel 
computational component for a custom high-performance application. Other 
development areas if macro-scheduling schemas for meta-clusters and other 
distributed systems.  
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