

 V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 303 – 312, 2005.
© Springer-Verlag Berlin Heidelberg 2005

OpenTS: An Outline of
Dynamic Parallelization Approach

Sergey Abramov1, Alexei Adamovich1, Alexander Inyukhin2, Alexander Moskovsky1,
Vladimir Roganov1, Elena Shevchuk1, Yuri Shevchuk1, and Alexander Vodomerov2

1 Program System Institute, Russian Academy of Sciences, Pereslavl-Zalessky, 152020,
Russia, Yaroslavl Region.
+7 08535 98 064 (phone&fax)

abram@botik.ru
2 Moscow, 119192, Michurinsky prosp., 1, Institute of Mechanics of MSU, Russia

Abstract. The paper is dedicated to an open T-system (OpenTS) — a
programming system that supports automatic parallelization of computations
for high-performance and distributed applications. In this paper, we describe the
system architecture and input programming language as well as system’s
distinctive features. The paper focuses on the achievements of the last two years
of development, including support of distributed, meta-cluster computations.

1 Open T-System Outline

Open T-System (Open TS) is a recent dynamic program parallelization technology for
high-performance and distributed applications. It originates from functional and meta-
programming technologies [1, 2] and tries to achieve maximum performance of
single/multi-processors, supercomputers, clusters and meta-clusters. Another goal was
the development of easy-to-use tools for parallel programming, with high learning
curve and easy legacy code support. With initial implementations of T-system dated
back to nineties and end of eighties of the last century, Open TS is a third generation
of the T-system [3]. The Open TS approach allows addressing in a uniform way
parallel computing problem for mutli-core processors, SMP systems, computational
clusters and distributed systems. As well, Open TS facilitates parallel applications
with non-uniform parallelism grains or parallelism grains defined at runtime.

1.1 Related Work

The Open TS design utilizes many concepts of parallel computing. First of all, it
devises high-level parallelizing approach, while many of them currently exist [4].
Secondly it utilizes an extension of C++ language to express parallelism, while many
other extensions of C and C++ for parallel computing were developed [5]. Thirdly,
the concept of T-system is based upon functional programming approach [1], that
make it very similar to parallel implementations of functional languages [6]. At last,
Open TS runtime implementation utilizes Distributed Shared Memory (DSM) [7],
mutli-tier architecture [8] and C++ template- based design [9]. Here we note
separately only small fraction of all works in this field, not comprehensive but
representative, as we hope:

304 S. Abramov et al.

1. Charm++ [10] is a C++ extension for parallel computing, which is used to
create high-performance codes for supercomputers [11]. Open TS is different
in many aspects – from runtime implementation to language semantics. The
most important is that Open TS uses functional approach for parallelization,
while Charm++ uses asynchronous communication with object-oriented
model.

2. mpC++ is another example of successful implementation of “parallel C” for
computational clusters and heterogeneous clusters [12]. While mpC uses
explicit language constructions to express parallelism, Open TS has implicit
parallelization constructs.

3. Cilk is a language for multithreaded parallel programming based on ANSI C
[13]. Cilk is designed for shared memory computers only, in contrary Open
TS can be run on computational clusters and meta-clusters.

4. Glasgow Parallel Haskell is a well-known extension of Haskell programming
language [14]. Open TS is similar with GPH by utilizing some implicit
approach to parallelizing computation, while enabling low-level optimization
on C++ level, unavailable in Haskell.

5. OMPC++[15] is very similar to Open TS in many aspects, especially in the
way of using C++ templates in runtime. However, language extensions are of
primary importance for Open TS concept.

While many parallel programming techniques, like Unified Parallel C [16] and CxC
[17] are not covered in our comparison, Open TS distinctions will be virtually the
same.

1.2 Programming Model

Unlike many tools for parallel programming, T-System does not try to change the
usual programming model too much. Native input language is a transparent attribute-
based extension of C++; however, other T-dialects of programming languages are in
the development stage: T-FORTRAN, T-REFAL. Only two new notions are really
important for programming: T-function and T-value. T-values are extensions of basic
C values with non-ready value, read access to a non-ready value stops execution of a
T-function, unless C-value is provided during computation. T-functions are pure C-
functions forming functional model at the top level of program structure. However,
imperative C exists inside T-functions enabling potential for low-level optimization.
Support for object oriented-model is forthcoming.

An important feature of Open TS is a separation of the computation code from the
scheduling code. In Open TS, the programmer is enabled to develop complex
strategies for dynamic parallelization without affecting the computational code itself.

1.3 Execution Model

Parallel execution is based on a completely conflict-free data-flow model, and the
“macro-scheduling” algorithm distributes computational tasks (active T-functions)
over all available computing resources on the fly. Thus, latency hiding should enable
very high computational power utilization. Moreover, heterogeneous (e.g. different
CPU speeds) computational clusters can be efficiently loaded with that approach.

 OpenTS: An Outline of Dynamic Parallelization Approach 305

Special hardware such as application-specific accelerators and processors can be also
considered as specific computational resources, it is dynamically loaded in the same
way.

Millions of threads1 can work in a cooperative and conflict-free way enabling
latency hiding: any time non-ready T-value is reached, T-System switches rapidly to
another ready-to-compute task. In this way, T-System avoids blocking computation in
many cases when communication infrastructure permits. In brief, T-System may be a
good candidate to fill up the gap between fast recent CPUs and latency-restricted
communications.

1.4 T-Applications

T-application is a self-contained, dynamically linked executable. In a nutshell, it
recognizes the execution environment and automatically loads a corresponding
communication driver on the fly. The execution environment may be one of the
following.
• Unicomputer – runs as a single process
• SMP — runs on a machine with symmetric multi processing capabilities
• MPI (6 flavors are supported now, including PACX MPI and MPICH-G2 for the

meta-cluster environment)
• PVM.

Thus, T-applications don't need to be recompiled or re-linked for all possible
communication flavors. This is important in many cases, especially in meta-clusters
with heterogeneous MPI implementations.

2 Open T-System Design Notes

Open T-System runtime has a microkernel-based design. Microkernel, or T-
Superstructure, is a central part of the runtime. It contains all essential entities that a
typical program needs to be run on. T-Superstructure has a “snowman” architecture of
three tiers: `S' (“super-memory” and “super-threads”), `M' (mobile objects and
references) and `T' (T-values, variables, references, functions). Being compact in size
(less than 5 000 lines in about 100 C++ classes), it suits for various extensions:
enhanced task schedulers, memory allocation schemes, custom thread systems, and so
on. A special class 'Feature' is used to register extension plug-ins, which are typically
dynamically linked at the startup stage. The microkernel can be easily ported to
`almost pure' hardware, because it is almost self-contained. C++ [cross] compiler only
is required for such porting. However, since C++ templates are used extensively, a
modern C++ compiler is required.

Fast context switch is a special feature of Open TS, which is very important for
efficient T-applications. Since T-applications are known to create millions of
simultaneous threads, fast switching is key important. Today, the T-context switch is
10 times faster than the fastest standard thread library switch.

1 Opens supports the usage of more than one million of threads even in one usual processor —

this was shown practically, this was used in real applications.

306 S. Abramov et al.

A “Supermemory”, or special kind of distributed shared memory, is located outside
of program data and used to manage T-values. Novel communication technologies
such as hyper-transport can be directly incorporated into the “Supermemory” layer to
avoid an unnecessary MPI overhead. Super memory is utilized in six different ways:

1. T-Values
2. Task exchange
3. Resource information exchange
4. Memorization table
5. “Heartbeat” (see below)
6. Shutdown signal

The fault-tolerance support has been implemented with the help of LAM MPI
BLCR checkpoint system [18]. It is integrated with the T-System runtime, thus
making fault-tolerant computing easier.

Since the T-system originates from the functional programming model, it is
possible to implement the fault-tolerance on the base of re-computing of T-functions.
This work is forthcoming.

3 Compilation of T-Programs

Two approaches are followed to develop compilers for T++ programs.
The first, “converter”, approach utilizes OpenC++ [19] parser to translate a T++

program to a C++ program using Open TS runtime library calls. Advantage of that
approach is that the best-of-breed C++ compiler can be used, with the best processor-
specific optimization available. The drawback is some C++ syntax features that are
not supported seamlessly due to Open C++ limitations.

An alternate, “compiler”, approach is based on an open-source GNU C++
compiler. An extra front-end language for T++ has been implemented, it has a smooth
and comprehensive support of all C++ language features. However, if the GNU C

 OpenTS: An Outline of Dynamic Parallelization Approach 307

compiler optimization is not on a par with the other compilers of the target platform, a
performance loss might happen.

4 T-Application Development Stages

First of all, T++ is a transparent attribute-based dialect of C++. The T++ code can be
trivially mapped to the sequential C++ program by masking T-attributes on the
preprocessor stage. To start, the T++ code may be developed and debugged without
T-System.

Then, the `t++' compiler may be used to obtain T-executables which should be able
to normally run on the unicomputer. Thus, the second stage of the development
process is to check whether everything works correctly on the unicomputer — this
involves usual testing and debugging for the traditional (one-processor) case.

Furthermore, the same executable may be run on the `cluster emulation'. The
simplest way to do this is to use LAM on various Linux systems: the command

mpirun n0,0,0,0 <t-executable>

will emulate the 4-node cluster. Some tuning can be done at this stage.
Finally, run T-executable on the desired target platform.

5 T-Application Debugging and Tuning

T-System has a number of built-in profiling, tracing and debugging facilities.
First of all, debugging is facilitated by several modes of compilation: “optimized”,

“normal” and “debug”. The “optimized” mode uses the runtime version with heavy
optimization. The runtime of the “normal” mode is simplified as compared to the
“optimized” version. If an application is compiled in the “normal” mode and a
problem persists, it should be attributed to the application itself — not the runtime —
with high degree of confidence. Moreover, the “debug” mode generates a large
amount of debug output, which helps programmers to understand the current situation
in T-runtime and applications. This output can be filtered with the help of regular
expressions.

A full-fledged Trace facility has also been implemented for T-applications.
When the program is finished, some statistical data is printed (see figures below).

It includes minimal/medium/maximal (depending on computational nodes) values of
the following parameters: used CPU time, communication time, idle time. This hot
profiling information may be very useful for the tuning of applications.

Communication message logs can be called in order to understand which
communication traffic occurred during the program execution. A T-function call
graph can also be obtained.

If the program crashes, some information (including program call stack with source
line numbers) is printed. Optionally, the debugger is started at the same time, which
may be very convenient for a rapid problem discovery.

Finally, a special heartbeat logic is used to discover broken
program/communication state. If heartbeat timeout is reached without any data
exchange, then all T-processes will exit automatically.

308 S. Abramov et al.

6 Sample Program Run

The example program is the calculation the Fibonacci number. Since it is not very
hard computationally, it is a good test for the runtime system, and it illustrates well
the simplicity of T++ programming.

tfun int fib(int n)
{
 if (n<2) return 1;
 return (fib(n-1)+fib(n-2));
}
tfun int main (int argc, char *argv[])
{
 int n = atoi(argv[1]);
 printf(“Fibonacci %d is %d\n”,n,(int)fib(n));
 return 0;

}

The only T-function is the “fib” function which recursively calls itself. Since the
result of “fib” is a non-ready value, explicit casting to int is necessary for the program
to run correctly. The casting results in the “main” thread wait until the result of “fib”
is ready. “fib” recursively calls itself creating a tree, while the tree branches can be
computed in parallel.

Compiling the program is possible with either t++ or tg++.

t+ -o fib0 fib0.tcc

The process of the program execution is illustrated in Fig. 1 (running on single
processor) and Fig. 2 (running on four-cluster nodes). You may see some speedup
demonstrated by “fib”. The example has been a mere illustration that doesn’t reflect
the real quality of T-system, benchmarking results will be published elsewhere.

Fig. 1. Sample program run result in console

 OpenTS: An Outline of Dynamic Parallelization Approach 309

Fig. 2. Sample program run on multiple cluster nodes

7 T++ Language in a Nutshell

The T++ language is a semantically and syntactically “seamless” extension of C++.
The language constructions are enumerated below with short descriptions following
them:

tfun — a function attribute which should be placed just before the function
declaration. Now, the function cannot represent a class method but must be an
ordinary C function. A function with the “tfun” attribute is named “T-function”.

tval — a variable type attribute which enables variables to contain a non-ready
value. The variable can be cast to the “original” C++-type variable, which makes the
thread of execution suspend until the value becomes ready.

tptr — a T++ analogue of C++ pointers which can hold references to a non-ready
value.

tout — a function parameter attribute used to specify parameters whose values are
produced by the function. This is a T++ analog of the “by-reference” parameter
passing in C++.

tct — an explicit T-context specification. This keyword is used for specification of
additional attributes of T-entities.

tdrop — a T++ -specific macro which makes a variable value ready. It may be
very helpful in optimization when it’s necessary to make non-ready values ready
before the producer function finishes.

8 Runtime Performance

The detailed performance study of Open TS runtime is out of the current paper scope
and will be published elsewhere. However, overall runtime performance and quality is
good enough to stimulate many groups outside of Program Systems Institute to

310 S. Abramov et al.

develop their own applications with Open TS (see below). Best speedup achieved
with image-processing application is approximately 60% of linear speedup on 32-
processor computational cluster with Scalable Coherent Interface (SCI) interconnect.

9 Applications

Approximately a dozen of applications have been developed with the help of T-
system. Some of them are the following:

• Plasma physics modeling tool
• Aerodynamics simulation package
• Tools for computational modeling in chemistry
• Automatic text categorization package
• Radar image modeling application
• Remote sensing images processing

10 Support

Open T-System is being developed in the Program System Institute of the Russian
Academy of Sciences (PSI RAS) as a key technology in the SKIF Super-Computing
project. The system support can be obtained via e-mail: opents@botik.ru
(developers’ conference).

11 Work in Progress

We are also working on various application-oriented T-libraries. Such libraries are
represented as the T++ code (working also in pure C++) and may be used without any
knowledge of T++ or even parallel programming at all. Using the C++ inheritance
mechanism, an application programmer just needs to define several application-
specific methods — virtual functions — to obtain a complete highly-parallel
computational component for a custom high-performance application. Other
development areas if macro-scheduling schemas for meta-clusters and other
distributed systems.

Acknowledgements

This work is supported by joint “SKIF” supercomputing project of Russia and Belarus
and basic research grant from Russian Academy of Science program “High-
performance computing systems on new principles of computational process
organization” and basic research program of Presidium of Russian Academy of
Science “Development of basics for implementation of distributed scientific
informational-computational environment on GRID technologies”.

 OpenTS: An Outline of Dynamic Parallelization Approach 311

References

1. Field A.J, Harrison P.: Functional Programming (International Computer Science Series),
Addison-Wesley (1988)

2. (a) Turchin V.F.: The concept of a supercompiler Transactions on Programming
Languages and Systems.––v .8, N 3 (1986) .292 –325. (b) Ershov A.P., D.,Futamura
Yo.,Furukawa K.,Haraldsson A.,Scherlis W.L.:Selected Papers from the Workshop on
Partial Evaluation and Mixed Computation. New Generation Computing. v.6 , N 2 –3.

3. (a) Abramov S. M., Adamovich A. I., Kovalenko M. R.: T-system as a programming
environment with automatic dynamic support parallelization support. An example with
implementation of ray-tracing algorithm Programmirovanie, № 25 (2), 100–107.(in
Russian) (b) Abramov S. M., Vasenin V. A. , Mamchits E. E., Roganov V. A.: Slepukhin
A.F. Dynamic parallelization of programs based on parallel graph reduction. A software
architecture of new T-system version. Proceedings book of MIPHI scientific session, 22-
26 January 2001, v. 2, Moscow, 2001. (in Russian)

4. High-level Parallel Programming and Applications Workshop 2003 Proceedings in
Parallel Processing Letters , .v. 13, issue 3.

5. Gregory V.: Wilson (Editor), Paul Lu (Ed.) Parallel Programming Using C++ MIT Press, 1996
6. H-W. Loidl , F. Rubio , N. Scaife, K. Hammond , S. Horiguchi , U.Klusik , R. Loogen ,

G.J. Michaelson , R. Pena , S. Priebe ,A.J. Rebon and P.W. Trinder: Comparing parallel
functional languages,: programming and performance. J. of Higher-order and Symbolic
Computation, 2003

7. J.B. Carter, D. Khandekar, L. Kamb: Distributed shared memory: where we are and where
we should be headed. Fifth Workshop on Hot Topics in Operating Systems (HotOS-V)
May 04 - 05, 1995 Orcas Island, Washington

8. M. J. Vianna. E. Silva, S. Carvalho, J. Kapson,: In Proceedings of the 2nd European
Conference on Pattern Languages of Programming (EuroPLoP '97). Siemens Technical
Report 120/SW1/FB. Munich, Germany: 1997

9. Andrei Alexandrescu.: “Modern C++ Design: Generic Programming and Design Patterns
Applied” , Addison Wesley Professional., ISBN: 0201704315;2001

10. L. V. Kaleev, Sanjeev, Krishnan :Charm++: Parallel Programming with Message-Driven
Objects. In [5] 175-213

11. James C. Phillips Gengbin Zhengy Sameer Kumary Laxmikant V. Kaley :NAMD:
Biomolecular Simulation on Thousands of Processors. In: Supercomputing 2002
conference proceedings http://sc-2002.org/paperpdfs/pap.pap277.pdf

12. Alexey Lastovetsky: mpC - a Multi-Paradigm Programming Language for Massively
Parallel Computers, ACM SIGPLAN Notices, 31(2):13-20, February 1996

13. Cilk: Efficient Multithreaded Computing by Keith H. Randall. Ph. D. Thesis, MIT
Department of Electrical Engineering and Computer Science. June 1998.
http://supertech.lcs.mit.edu/cilk/

14. Pointon R.F. Trinder P.W. Loidl H-W.: The Design and Implementation of Glasgow distributed
Haskell: IFL'00 - 12th International Workshop on the Implementation of Functional Languages,
Aachen, Germany (September 2000) Springer Verlag LNCS 2011, pp 53-70

15. Yukihiko Sohda, Hirotaka Ogawa, Satoshi Matsuoka OMPC++ - A Portable High-
Performance Implementation of DSM using OpenC++ Reflection. Lecture Notes In
Computer Science; Vol. 1616 pp 215-234 Proceedings of the Second International
Conference on Meta-Level Architectures and Reflection , 1999,

312 S. Abramov et al.

16. F. Cantonnet, T. El-Ghazawi: UPC Performance and Potential: A NPB Experimental Study,
in Supercomputing 2002 conference proceedings http://sc-2002.org/paperpdfs/pap.
pap316.pdf

17. CxC Programmer's Manual. Engineering Intelligence Corporation, 2004, available at
http://www.engineeredintelligence.com/

18. Sankaran S. , Squyres J.M. , Barrett D., Lumsdaine A. , Duell J. , Hargrove P. Roman E.
The LAM/MPI Checkpoint/Restart Framework: System-Initiated Checkpointing,
Proceedings, LACSI Symposium, October 2003, Sante Fe, New Mexico, USA.

19. Chiba S. A Metaobject Protocol for C++ , In: Proceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), page 285-
299, October 1995.http://www.csg.is.titech.ac.jp/~chiba/openc++.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

